
Frontiers in Immunology | www.frontiersin.

Edited by:
Fabrice Cognasse,

Groupe Sur L'immunité Des
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Inflammation is a tissue response to a variety of harmful stimuli, such as pathogens,
irritants, and injuries, and can eliminate insults and limit tissue damage. However,
dysregulated inflammation is recognized as a cause of many human diseases,
exemplified by organ fibrosis and cancer. In this regard, inflammation-promoted fibrosis
is commonly observed in human lung diseases, such as idiopathic pulmonary fibrosis and
pneumoconiosis. Carbon nanotubes (CNTs) are a type of nanomaterials with unique
properties and various industrial and commercial applications. On the other hand, certain
forms of CNTs are potent inducers of inflammation and fibrosis in animal lungs. Notably,
acute inflammation is a remarkable phenotype elicited by CNTs in the lung during the early
acute phase post-exposure; whereas a type 2 immune response is evidently activated
and dominates during the late acute and chronic phases, leading to type 2 inflammation
and lung fibrosis. Numerous studies demonstrate that these immune responses involve
distinct immune cells, various pathologic factors, and specific functions and play crucial
roles in the initiation and progression of inflammation and fibrosis in the lung exposed to
CNTs. Thus, the mechanistic understanding of the immune responses activated by CNTs
has drawn great attention in recent years. This article reviews the major findings on the cell
signaling pathways that are activated in immune cells and exert functions in promoting
immune responses in CNT-exposed lungs, which would provide new insights into the
understanding of CNT-induced lung inflammation and inflammation-driven fibrosis, the
application of CNT-induced lung inflammation and fibrosis as a new disease model, and
the potential of targeting immune cells as a therapeutic strategy for relevant human
lung diseases.

Keywords: inflammation, type 2 immune response, carbon nanotube, immune cell, signaling pathway,
transcription factor
INTRODUCTION

Carbon nanotubes (CNTs) are a category of cylindrical nanomaterials composed of either a single
layer or concentric multiple layers of one-atom-thick carbon sheets, which are designated as single-
walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), respectively.
In the past two decades, the increasing annual production of CNTs and CNT-containing materials
org December 2020 | Volume 11 | Article 5526131
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Dong Signaling to CNT Lung Inflammation
and the expanding applications of CNTs in various industrial
and commercial areas, such as electronics, energy, materials, and
biomedical devices and drugs, have noticeably taken place owing
to the unique properties of CNTs as new materials (1–3).
However, some physicochemical properties of CNTs, such as
the nano-scaled size, high aspect ratio, fiber-like shape, poor
solubility, and substantial biopersistence, render CNTs to be
respirable fibers, cause CNTs to act as foreign bodies after
inhalation, and potentially link CNTs to toxic fibers with
pathological activities, similar to asbestos. Indeed, a number of
toxicological effects, exemplified by cytotoxicity, genotoxicity,
and immunotoxicity, and pathological effects, exemplified by
inflammation, fibrosis, and tumorigenesis, are markedly induced
by certain types of CNTs in experimental animals, resulting in a
serious concern over the potential adverse health effects of CNT
exposure in human populations (4–9).

The most predominant CNT-induced pathological outcomes
are recognized as the rapidly initiated and long-lasting
inflammation and fibrosis in the lung in exposed experimental
animals. Accumulating phenotypic observations exhibit that CNT-
triggered lung inflammation and fibrosis share high similarities
with those occurring in a variety of human lung diseases, such as
idiopathic pulmonary fibrosis, silicosis, and asbestosis, regarding
pathologic features. Moreover, mechanistic analyses reveal that the
systemic, cellular, and molecular activities during the development
of inflammation and fibrosis in CNT-exposed lungs are in
agreement with the overall understanding of these pathologic
Abbreviations: 4-HNE, 4-hydroxy-2-nonenal; 8-OHdG, 8-hydroxy-2′-
deoxyguanosine; a-SMA, a-smooth muscle actin; AP-1, activator protein 1;
ARG1, arginase 1; ASC, apoptosis-associated speck-like protein containing a
caspase activation and recruitment domain; BAL, bronchoalveolar lavage;
BMMC, bone marrow-derived mast cell; CCL, chemokine (C-C motif) ligand;
CD163, hemoglobin scavenger receptor; CD206, mannose receptor C-type 1 or
MRC1; Chia, chitinase, acidic, or AMCase; CNT, carbon nanotube; COX-2,
cyclooxygenase-2; CXCL, chemokine (C-X-C motif) ligand; ECM, extracellular
matrix; ELISA, enzyme-linked immunosorbent assay; ERK, extracellular signal-
regulated kinase; FGF-BASIC, basic fibroblast growth factor; FIZZ1, found in
inflammatory zone 1, resistin-like molecule a or RELMa, or resistin-like-a or
RETNLa; gH2AX, phospho-Histone H2A.X (Ser139); GATA-3, GATA-binding
protein 3; GSH, glutathione; HMGB1, high mobility group box 1; ICAM-1,
intercellular adhesion molecule 1; IL, interleukin; IL-1R, IL-1 receptor; IL-
1RAcP, IL-1 receptor accessory protein; Il4i1, interleukin 4 induced 1, or Fig1;
IL-4Ra, IL-4 receptor a; IL-6R, IL-6 receptor; ILC2, group 2 innate lymphoid cell;
JNK, c-Jun N-terminal kinase; KO, knockout; LPS, lipopolysaccharides; M1,
traditionally activated macrophage; M2, alternatively activated macrophage;
MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemotactic
protein 1; MKK, mitogen-activated protein kinase kinase; MMP12, matrix
metalloproteinase 12; MWCNT, multi-walled carbon nanotube; NF-kB, nuclear
factor-kB; NLR, nucleotide-binding oligomerization domain-like receptor;
NLRP3, nucleotide-binding oligomerization domain-like receptor: pyrin
domain-containing 3; Nrf2, nuclear factor erythroid 2-related factor 2; OPN,
osteopontin or secreted phosphoprotein 1 or SPP1; PDGF, platelet-derived growth
factor; Rag1, recombination activating gene 1; ROS, reactive oxygen species; sIL-
1RII, soluble IL-1 receptor II; ST2, suppression of tumorigenicity 2, receptor for
IL-33 or IL-33R, IL-1 receptor-like 1 or IL1RL1, or IL-1 receptor 4 or IL-1R4;
STAT6, signal transducer and activator of transcription 6; SWCNT, single-walled
carbon nanotube; Syk, spleen tyrosine kinase; Th, T helper; TGF-b1, transforming
growth factor-b1; TIMP1, tissue inhibitor of metalloproteinase 1; TNF-a, tumor
necrosis factor-a; TNFR, TNF receptor; TSLP, thymic stromal lymphopoietin;
WT, wild-type; YM1, chitinase 3-like 3 or CHI3L3, or eosinophil chemotactic
factor-lymphocyte or ECF-L.

Frontiers in Immunology | www.frontiersin.org 2
processes derived from relevant human diseases and animal
disease models, indicating the potential of CNT-exposed animals
to serve as a new disease model. These findings markedly escalate
the interest and significance of elucidating inflammation and
fibrosis induced by CNT exposure in the lung. It is noticeable that
similar to the scenarios observed in many chronic diseases,
exemplified by idiopathic pulmonary fibrosis, liver fibrosis, and
systemic sclerosis, inflammationandfibrosis inCNT-exposed lungs
are demonstrated to mechanistically interact with each other
through the activities of effector cells, soluble mediators, and
ECM (10–14). In this regard, the time- and context-dependent
activation, mode of action, and function of immune responses play
critical roles in regulating the initiation and progression of
inflammation and fibrosis in the lung during CNT exposure.
Therefore, elucidating CNT-induced immune responses is a
requisite step for understanding lung pathology triggered byCNTs.

The inducible regulation of intracellular signaling plays a
central role in physiological conditions and meanwhile functions
as the key means to respond to endogenous and exogenous
stresses in multicellular organisms. Dysregulation of cell
signaling is responsible for the deleterious effects that lead to
disease initiation and development. Accordingly, following the
phenotypic observation of CNT-induced inflammation and
fibrosis, in recent years great efforts have been made into the
identification of crucial cell signaling mechanisms that are
induced by CNT exposure and implicated in immune response
activation and function in the lung. To dissect the cellular and
molecular mechanisms underlying CNT-induced inflammation,
in this article, recent advances into the framework encompassing
key signaling elements in immune cells in CNT-exposed lungs
are discussed. Analysis in this aspect is anticipated to enhance
the understanding of lung pathology induced by CNTs and
meanwhile provide mechanistic basis for the development of
CNT-exposed animals as a new disease model for lung
inflammation and fibrosis.
CNT-INDUCED PULMONARY
INFLAMMATION AND FIBROSIS

Inflammation and fibrosis in the lung are the most predominant
pathological phenotypes in CNT-exposed experimental animals,
concluded from numerous studies carried out in the past decade.
In keeping with the accumulative findings achieved in this area, a
number of recent review articles have summarized the progress
in different aspects of CNT-induced lung inflammation and
fibrosis (10, 11, 14–17). To avoid repetition, here the current
knowledge on this topic is introduced concisely and comprehensively
as background information (Figure 1). For more detailed and
profound understanding, the previously published review papers,
as well as the research papers cited therein, are recommended to
refer to.

Upon exposure to CNTs through inhalation, intratracheal
instillation, or pharyngeal aspiration, acute inflammation is
rapidly induced in the lung, marked by pronounced recruitment
and infiltration of inflammatory cells, such as neutrophils,
macrophages, and lymphocytes, and copious production and
December 2020 | Volume 11 | Article 552613
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Dong Signaling to CNT Lung Inflammation
secretion of pro-inflammatory and pro-fibrotic cytokines,
chemokines, and growth factors, such as TNF-a, IL-1b, IL-6,
MCP-1, TGF-b1, and PDGF. Accompanying the acute
inflammation, CNTs trigger a rapid-onset fibrotic response,
indicated by increased deposition of ECM in alveolar septa
Frontiers in Immunology | www.frontiersin.org 3
starting as early as day 1 post-exposure (18, 19). The acute
inflammatory and fibrotic responses are maintained at high levels
within 7 days post-exposure. During the early phase of this stage,
the infiltration and activation of neutrophils and traditionally
activated M1 macrophages are dominant, resulting in acute
FIGURE 1 | Overview of carbon nanotube (CNT)-induced lung inflammation. Under exposure to CNTs, various immune cells are recruited from blood vessels and
infiltrate into lung tissues, triggered by cytokines, chemokines, ROS, and alarmins that are induced by CNTs through distinct mechanisms. During the early acute
phase response, neutrophils and M1 macrophages are dominant and active to produce pro-inflammatory cytokines, chemokines, and growth factors, resulting in
acute inflammation. Whereas during the late acute phase response, the immune cells implicated in type 2 immune response are dominant and produce type 2
cytokines and mediators, leading to type 2 inflammation. The activation of type 2 immune response mediates the transition from acute inflammation to chronic
inflammation and promotes the development of lung fibrosis.
December 2020 | Volume 11 | Article 552613
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Dong Signaling to CNT Lung Inflammation
inflammation; whereas during the late phase, type 2 immune
response becomes overwhelming in the lung. Type 2 immune
response is activated through the induction and functionalization
of Th2 lymphocytes and alternatively activated M2 macrophages,
which produce type 2 cytokines and mediators that function in
suppressing acute inflammation and promoting Th2-driven type 2
inflammation and organ fibrosis. The fibrotic response is induced
through the enriched and activated fibroblasts and myofibroblasts,
which are fibrosis effector cells responsible for producing ECM
proteins (10, 14). Thereafter, acute inflammatory and fibrotic
responses decline, but the chronic consequences develop (18, 20).
The chronic phenotypes are fully established by day 28 and persist
for at least 1 year post-exposure, which are characterized with
interstitial fibrosis, chronic inflammation, and granulomas. CNT-
induced lung fibrosis is featured with thickened alveolar septa,
formation of fibrotic foci and epithelioid granulomas, enrichment
and activation of fibroblasts and myofibroblasts, elevated
expression of fibrosis marker proteins, excessive deposition of
ECM, and lack of massive alveolar epithelial cell death (15). The
chronic inflammation is known to implicate M2 macrophages, T
lymphocytes, and the increased levels of certain pro-inflammatory
and pro-fibrotic cytokines, chemokines, and growth factors;
nevertheless, it awaits further analysis for its features, activities,
and functions in CNT-exposed lungs (14). In aggregate, these
observations demonstrate that immune system activation
controls the initiation, progression, and maintenance of CNT-
triggered lung inflammation, and meanwhile plays critical roles in
promotingCNT-induced lungfibrosis through producing a variety
of pro-fibrotic mediators. Thus, a comprehensive mechanistic
understanding of CNT-activated immune responses would
provide new insights into CNT lung pathology, as well as
enhance the overall understanding of human lung diseases
involving inflammation and fibrosis.

Importantly, a few recent studies demonstrate that certain pro-
inflammatory and pro-fibrotic responses identified in experimental
animals are induced in CNT-exposed workers as well. For instance,
the levels of TNF-a, IL-1b, IL-4, IL-5, IL-6, and IL-8 in sputum, and
TNF-a, IL-1b, and IL-4 in serum, of the workers occupationally
exposed toMWCNTs are significantly higher than controls (21); the
levels of CCL20, sIL-1RII, and FGF-BASIC are elevated in the serum
ofMWCNT-exposed workers, comparedwith controls (22); and the
level of ICAM-1 in the blood shows a dose-dependent upward trend
in MWCNT-exposed workers, compared with unexposed group, at
two time points examined (23). Although the investigation onCNT-
induced effects in humans is at an early stage, these findings indicate
that inflammationandfibrosis are potential pathological outcomesof
CNT exposure in human populations.

Mechanistic studies reveal that CNT exposure may trigger the
infiltration of immune cells, a hallmark and initial step of
inflammation, in the lung through multiple ways (Figure 1).
First, CNTs cause phagocytosis and frustrated phagocytosis in
alveolar macrophages, resulting in elevated production of ROS
that induces inflammation and tissue damage (5, 9, 24, 25).
SWCNTs induce a dose-dependent accumulation of 4-HNE (a
marker of lipid peroxidation) and a time- and dose-dependent
depletion of GSH (a major antioxidant) as early as 1 day post-
Frontiers in Immunology | www.frontiersin.org 4
exposure in mouse lungs, indicating oxidative stress as a rapid
response to SWCNT exposure (26). MWCNTs (XNRI MWNT-7)
markedly increase ROS production in alveolar macrophages, as
well as the levels of oxidative stress markers 8-OHdG, gH2AX,
and 4-HNE, in mouse lungs; and these increases are evidently
more striking in Nrf2 KO lungs than inWT lungs. Correspondingly,
the numbers of immune cells, including granulocytes, macrophages
(Mac2+), T cells (CD3+), and B cells (B220+), are noticeably higher
in Nrf2 KO lungs than inWT lungs (27). These findings indicate the
critical role of ROS in stimulating immune cell infiltration and
initiating immune responses in the lung exposed to CNTs. Second,
alveolar macrophages can be activated by CNTs to produce pro-
inflammatory cytokines and chemokines, which trigger the
recruitment and infiltration of inflammatory cells, such as
neutrophils and monocytes. Alveolar macrophage depletion with
liposomal clodronate impairs the induction of TNF and IL-6 by
MWCNTs 12 h post-exposure and attenuates the influx of
neutrophils induced by MWCNTs 24 h post-exposure in mouse
lungs; and adoptive transfer of alveolar macrophages into alveolar
macrophage-depleted mice partially rescues the induction of TNF
and, conditionally, IL-6, and the infiltration of neutrophils by
MWCNTs in the lung (28). Thus, the production of pro-
inflammatory mediators by alveolar macrophages in CNT-exposed
lungs may trigger the onset of inflammation. Third, CNTs can
penetrate airway and alveolar epithelium to induce epithelial
lesions, which result in increased production and secretion of
alarmins by epithelial cells, in the lung (14). Among CNT-induced
alarmins,HMGB1promotes acute inflammation by increasing IL-1b
secretion, whereas IL-25, IL-33, and TSLP may trigger the
recruitment of type 2 immune cells leading to the activation of type
2 immune response, in CNT-exposed lungs. The induction and roles
ofHMGB1and IL-33 inCNT-exposed lungs are discussed indetail in
later sections. Fourth, myofibroblasts are highly enriched during
fibrotic response to CNT exposure in the lung. Myofibroblasts
exhibit high levels of constitutive and induced production and
secretion of cytokines, chemokines, and ROS, which may
contribute to the infiltration of immune cells as well (15).
Combined, these effects of CNTs enable the recruitment of different
typesof immunecells andtheactivationofdistinct immuneresponses
in CNT-exposed lungs.

The immune responses induced by CNTs lead to the elevated
production of pro-inflammatory and pro-fibrotic soluble factors,
such as cytokines and growth factors, which activate certain cell
signaling pathways in fibroblastic cells and thereby promote CNT-
induced lung fibrosis. For instance, pro-inflammatory cytokines,
such as TNF-a and IL-1b, can activate the canonical NF-kB
signaling to upregulate the expression of pro-fibrotic mediators
TIMP1 and OPN in fibroblasts and myofibroblasts; type 2
mediators OPN and TGF-b1 can activate the canonical, Smad-
dependent TGF-b signaling to induce the expression of fibrotic
proteins, such asa-SMA, Collagen I, and fibronectin, in fibroblasts
and myofibroblasts; and type 2 mediator TIMP1 can activate ERK
signaling in fibroblasts to promote fibroblast proliferation, inCNT-
exposed mouse lungs (14). Thus, immune responses generate
microenvironmental cues that promote the initiation and
progression of lung fibrosis induced by CNTs.
December 2020 | Volume 11 | Article 552613
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The immune responses manipulate the rapid-onset of acute
inflammation, propagation of pro-inflammatory cues, recruitment,
differentiation, and polarization of immune cells of different
functions, transition from a pro-inflammatory immune response
to a type 2 immune response, and progression from acute
inflammation to chronic inflammation. These functions are
exerted and controlled by the induction and activation of cell
signaling pathways and their target functional proteins, molecular
mediators, and cellular processes. As such, the time- and context-
dependent signaling pathways activated in immune cells play central
roles in the orchestration of immune responses in CNT-exposed
lungs. In this respect, a number of important pathways have been
identified to underlie CNT-induced immune responses and
pathological outcomes in the lung, which are specifically discussed
in this article.
CELL SIGNALING ASSOCIATED WITH
CNT-INDUCED ACUTE INFLAMMATION
IN THE LUNG

Acute inflammation is an immediate defense to a diversity of
environmental insults, such as microbial infections and foreign
body deposition. Neutrophils and macrophages are the key
Frontiers in Immunology | www.frontiersin.org 5
frontline players in this response with multiple protective
functions, such as killing pathogens and engulfing and clearing
foreign bodies. In CNT-exposed lungs, acute inflammation is
rapidly induced within 1 day post-exposure and exhibits as a
dominant phenotype in early acute phase response, marked by
the increased numbers of neutrophils and macrophages and
elevated levels of pro-inflammatory cytokines and chemokines
(14, 18, 26). A few critical pathways have been investigated to
elucidate the mechanisms underlying the striking acute
inflammatory response, which disclose the early activities that
initiate CNT-induced pathologic effects (Figure 2). The
functional studies performed in knockout mice are listed in
Table 1.
NF-kB SIGNALING

The transcription factor NF-kB plays critical roles in immune
responses through upregulating the transcription of a wide range
of genes. A number of NF-kB target genes encode the proteins
that function as inducers, mediators, and effectors in activating
inflammatory networks upon exposure to stimuli. Excessive and
prolonged NF-kB activation is implicated in a long list of
inflammatory diseases, such as asthma, rheumatoid arthritis,
FIGURE 2 | Cell signaling pathways activated in acute inflammation induced by carbon nanotubes (CNTs). NF-kB signaling is activated by CNTs and upregulates
the expression of a variety of pro-inflammatory cytokines, such as TNF-a, IL-1a, and IL-1b, which in turn activate this signaling pathway. IL-1R signaling is shown to
play a critical role in promoting CNT-induced acute inflammation in the lung, which is activated by IL-1a and IL-1b. NLRP3 inflammasome signaling is activated by
CNTs and generates mature IL-1b and IL-18 for secretion and function. These three pathways represent the molecular basis for CNT-triggered acute inflammation.
December 2020 | Volume 11 | Article 552613
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TABLE 1 | Functional studies of signaling molecules in carbon nanotube (CNT)-induced pulmonary immune responses using knockout (KO) mice.

Findings in KO mice References
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Dong Signaling to CNT Lung Inflammation
inflammatory bowel disease, and multiple sclerosis (35–41). As
such, activation of NF-kB signaling is regarded as one of the
most predominant events that control inflammatory responses in
disease or under stress.

Studies performed in various types of cultured cells, such as
epithelial cells, endothelial cells, and mesothelial cells, reveal that
SWCNTs and MWCNTs are capable of inducing NF-kB
activation under different conditions (42–47). Importantly,
SWCNTs and MWCNTs activate NF-kB pathway and elevate
the expression of NF-kB-target genes that encode pro-
inflammatory cytokines and chemokines, such as TNF-a, IL-
1b, IL-6, and MCP-1, in mouse RAW264.7 macrophages (48,
49). These in vitro studies suggest the potential involvement of
NF-kB in CNT-induced pathologic effects in the lung, including
the onset of inflammation. Pathway analysis of Affymetrix
microarray data reveals that NF-kB-associated inflammatory
responses and downstream signals regulating tissue remodeling
are important factors for the pathologic outcomes induced by
SWCNTs in mouse lungs (50, 51). Meanwhile, upstream
regulator and network analysis of Illumina microarray data
identifies NF-kB signaling as one of the major networks that
are activated by MWCNTs in mouse lungs (52). These genome-
wide gene expression studies provide the evidence for the overall
activation of NF-kB by SWCNTs and MWCNTs in the lung.

To determine the effect of CNTs on NF-kB signaling in
macrophages during acute inflammation in mouse lungs, nuclear
translocationofNF-kB subunit p65, amarker forNF-kBactivation,
was examined by double immunofluorescence staining of p65 (red)
Frontiers in Immunology | www.frontiersin.org 7
and the macrophage marker F4/80 (green), with DAPI nuclear
staining (blue), on lung tissue sections of WT C57BL/6J mice. The
effect of inflammagenic MWCNTs (XNRI MWNT-7; outside
diameter: 49±13.4 nm; length: 3.86±1.94 µm) was studied on days
3 and 7 post-exposure, which represent the early acute phase and
late acute phase of exposure, respectively. It is demonstrated that
NF-kB is markedly activated inmacrophages byMWCNTs during
the entire acute phase response in the lung, indicatedbynuclearNF-
kBwith pink color generated from the overlap of the red color (p65
staining) and the blue color (nuclear staining) in images (Figure 3).
This finding provides direct in vivo evidence for the activation of
NF-kB in macrophages in MWCNT-exposed lungs, and also
reveals the mechanistic basis for the elevated expression and
secretion of NF-kB-regulated pro-inflammatory cytokines and
chemokines in the lung exposed to CNTs.
IL-1a/b–IL-1R SIGNALING

IL-1a and IL-1b are potent pro-inflammatory cytokines with
elevated levels in various inflammatory diseases. In addition, they
are induced and secreted, mainly by monocytes and macrophages,
as an acute immune response to infection, lesion, and stress. They
bind to IL-1R, activate the NF-kB and MAPK signaling pathways,
and induce the expression of the genes encoding pro-
inflammatory cytokines and chemokines, thereby exerting pro-
inflammatory functions (54–59). Thus, together with the TNF-
a−TNFR pathway and the IL-6−IL-6R pathway, the IL-1a/b–IL-
FIGURE 3 | Activation of NF-kB in macrophages during acute inflammation in the lung of multi-walled carbon nanotube (MWCNT)-exposed C57BL/6J mice. Nuclear
p65 in macrophages is examined by double immunofluorescence staining of p65 (red) and F4/80 (green), with DAPI nuclear staining (blue), following the method
described previously (53). Pink color generated from the overlap of red and blue indicates nuclear p65, which demonstrates the activation of NF-kB. During both the
early acute phase and late acute phase, NF-kB is remarkably activated by MWCNTs in macrophages in mouse lungs.
December 2020 | Volume 11 | Article 552613
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Dong Signaling to CNT Lung Inflammation
1R signaling is recognized as a major player in the initiation and
maintenance of inflammation.

The IL-1a/b-activated, IL-1R-mediated signaling has drawn
attention when studying CNT-induced inflammation, owing to
the markedly increased levels of IL-1a and IL-1b in CNT-
exposed lungs observed in numerous animal studies. The level
of IL-1a in BAL obtained from mice exposed to MWCNTs
(XNRI MWNT-7) is significantly elevated on days 1, 3, 7, and 14
post-exposure (18, 30). The level of IL-1b in BAL is significantly
increased 40 h, and on days 1, 3, 7, and 28, post-exposure to
SWCNTs in mice (26, 60), and on days 1, 3, and 21 post-
exposure to MWCNTs in mice (18, 30, 61–63).

In this scenario, the role of IL-1a/b in CNT-induced lung
inflammation has been investigated, with the facilitation of IL-1R
KO mice and IL-1R antagonists (29). Long, rod-like MWCNTs
(outside diameter: >50 nm; length: ~13 µm), but not long, tangled
MWCNTs (outside diameter: 8-15 nm; length: 10-50 µm), induce
strong pulmonary neutrophilia, demonstrated by increased number
of neutrophils in BAL, as well as the expression of pro-inflammatory
cytokines and chemokines, such as TNF-a, IL-1b, CXCL1, CXCL2,
and CXCL5, in lung tissues, 16 h post-exposure in WT mice. These
phenotypes are significantly attenuated in WT mice that are pre-
treated with IL-1R antagonists, etanercept and/or anakinra, to block
IL-1a/b–IL-1R signaling and in IL-1R KO mice. In contrast,
deficiency of IL-1R does not affect long, rod-like MWCNT-induced
Th2-type inflammation, indicated by IL-13 expression and mucus
production, on day 28 post-exposure. Similarly, in another study, it is
demonstrated that XNRI MWNT-7 MWCNT-induced acute
inflammation is suppressed in IL-1R KO mice on day 1 post-
exposure, compared with WT mice, whereas IL-1R deficiency does
not suppress inflammation on day 28 post-exposure, determined by
thenumbers of total cells,mononuclear cells, andneutrophils and the
levels of IL-6, IL-12p40, and CXCL1 in BAL (30). These studies
therefore highlight the critical role of IL-1a/b–IL-1R signaling in the
onset of acute inflammatory response inducedbyMWCNTexposure
in the lung. Furthermore, the reduced induction of NF-kB-regulated
pro-inflammatory cytokines and chemokines by impaired IL-1a/b–
IL-1R signaling observed in these studies indicates NF-kB as a
downstream target that is activated by IL-1a/b–IL-1R signaling in
CNT-exposed lungs. MWCNTs have been shown to increase
phosphorylation of ERK1/2 in mouse RAW264.7 macrophages,
which is crucial to the induced expression of COX-2 by MWCNTs
(64). However, whether theMAPK pathway is activated through IL-
1a/b–IL-1R signaling and contributes to inflammation in CNT-
exposed lungs awaits to be investigated.
NLRP3 INFLAMMASOME ACTIVATION

Inflammasomes function as key components of cytosolic sensors
in detecting intracellular and extracellular signals and initiating
innate immune responses to protect from microbe infection and
tissue injury (65–68). They are large multiple protein complexes
with a few types identified. Each type of inflammasome has a
distinct protein composition and is activated by distinct and
specific stimuli, such as microbial pathogens and stressors.
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NLRP3 inflammasome is the most well-studied complex and
can be activated by a variety of pathogens, endogenous danger
signals, and environmental stimuli. NLRP3 inflammasome is
composed of the NLR protein NLRP3, the adaptor protein ASC,
and the effector proteolytic enzyme caspase-1 (pro-caspase-1).
Upon exposure to stimuli, NLRP3 protein is activated and
oligomerized, and recruits ASC and pro-caspase-1, resulting in
the formation of NLRP3 inflammasome, which then leads to the
cleavage of pro-caspase-1 to active caspase-1. The active caspase-
1 in turn cleaves inert pro-IL-1b and pro-IL-18 to generate
mature, active IL-1b and IL-18, which are then secreted from the
cell and play pro-inflammatory functions. As such, the activation
of NLRP3 inflammasome is required for the production of IL-1b
and IL-18 during inflammatory response.

The increased level of IL-1b in BAL induced by SWCNTs and
MWCNTs in mice prompted the investigation of the activation of
NLRP3 inflammasome by CNTs. A number of studies reveal that
SWCNTs and MWCNTs increase NLRP3 inflammasome-mediated
secretion of IL-1b and IL-18 in mouse and human macrophages in
vitro and ex vivo (62, 69–74). For instance, long, needle-like, but not
long, tangled, MWCNTs increase the secretion of IL-1b from LPS-
primed humanmonocyte-derivedmacrophages, examined by ELISA,
as well as the level of cleaved, active IL-1b, determined by
immunoblotting. The induction of secreted IL-1b by MWCNTs is
markedly attenuated by NLRP3 siRNA, compared with control
siRNA, and by P2X7 inhibitor or siRNA, ROS inhibitor, cathepsin
B inhibitor, and Syk inhibitor, which are known to impair the
activation of NLRP3 inflammasome (73). Importantly, the level of
IL-1b in BAL is increased by MWCNTs on day 1 post-exposure in
WT mice, which is abolished in caspase-1 KO mice. Coincidently,
the number of neutrophils, but not eosinophils, in BAL is
significantly reduced in caspase-1 KO mice, compared with WT
mice, on day 1 post-exposure to MWCNTs. This study therefore
provides in vivo evidence for theactivationofNLRP3 inflammasome
and its critical role in increasing IL-1b secretion and inducing acute
inflammation in MWCNT-exposed lungs (31). A recent study
demonstrates that the level of IL-18 in BAL collected from
MWCNT-exposed mice on day 1 post-exposure is also
significantly elevated, which supports the activation of NLRP3
inflammasome by MWCNTs in the lung (75). Together, these
findings identify that NLRP3 inflammasome is a target signaling
of CNTs in lung cells, such as monocyte-derived macrophages and
alveolar macrophages, and promotes the acute inflammatory
response elicited by CNTs in the lung.

The pro-inflammatory alarmin HMGB1 exhibits an elevated
level in BAL fluid obtained from mice exposed to SWCNTs or
MWCNTs (31, 76). It is shown that the expression and secretion of
HMGB1 are induced in C10mouse epithelial cells byMWCNTs in
vitro, suggesting epithelial cells are a source of HMGB1 in the lung
when exposed toMWCNTs (31). Importantly, facilitatedwith anti-
HMGB1 neutralizing antibodies and caspase-1 KO mice, it is
revealed that HMGB1 increases IL-1b secretion by activating
NLRP3 inflammasome and thereby promotes acute inflammation
in mouse lungs exposed to MWCNTs (31). These studies thus
demonstrate an alarmin-involved mechanism for MWCNT-
induced acute inflammation in the lung.
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CELL SIGNALING IMPLICATED IN CNT-
INDUCED TYPE 2 INFLAMMATION
IN THE LUNG

Type 2 inflammation is characterized by the activation of type 2
immune cells, such as eosinophils, mast cells, ILC2s, Th2
lymphocytes, and M2 macrophages, and the production of
type 2 cytokines and mediators, which exert functions in
suppressing acute inflammation and promoting chronic
inflammation, wound healing, and organ fibrosis (12, 77–81).
It has been revealed that during the late acute phase and chronic
phase responses to CNT exposure, type 2 inflammation presents
as the dominant immune phenotype and promotes the
development of fibrosis and chronic inflammation in the lung,
although certain type 2 immune cells, such as eosinophils, Th2
cells, and M2 macrophages, and type 2 factors, such as IL-33 and
IL-5, are observed to be induced by CNTs at mild levels during
early acute phase as well (10, 30, 31, 33, 52, 82). In this regard, the
cell signaling pathways that are activated during type 2 immune
response and contribute to pathologic outcomes have been
studied in CNT-exposed lungs in a few aspects (Figure 4). The
functional analyses carried out using knockout mouse models are
listed in Table 1.
IL-33−ST2 SIGNALING

IL-33 is a cytokine of the IL-1 family and functions as an alarmin
that activates immune responses under infection, injury,
environmental stress, and a variety of diseases, such as asthma
and COPD. It has drawn great attention because of its essential
role in evoking type 2 immune response through activating the
early effector cells in type 2 inflammation, such as mast cells,
eosinophils, and ILC2s. IL-33 acts as a cytokine, via binding to its
specific receptor ST2 and recruiting the co-receptor IL-1RAcP, to
induce the activation of NF-kB and MAPK (JNK, ERK, and p38)
signaling. One of the major outcomes from the activation of this
IL-33−ST2 signaling is the production of type 2 cytokines, such
as IL-4, IL-5, and IL-13, which provides the original source of
these cytokines for eliciting the key events in type 2 immune
response, more specifically, the differentiation and activation of
Th2 cells and M2 macrophages (83, 84).

Consistent with the investigation on the activation of type 2
immune response in CNT-exposed lungs, the upstream IL-33
−ST2 signaling has been observed in several studies. The levels of
IL-33 in BAL and lung tissues are significantly elevated by
MWCNTs in mice during both the acute and chronic responses,
indicating the possible role of IL-33 in CNT-activated lung
pathology (32, 33, 85, 86). Epithelial cells can be injured by a
diversity of insults and then produce and secrete alarmins,
including IL-33, and therefore are regarded as a major source for
induced IL-33 production (12, 78, 87). Indeed, in MWCNT-
exposed mouse lungs, IL-33+ type II pneumocytes (surface
epithelial cells of the alveoli) are present in the vicinity of alveolar
macrophages phagocytosing MWCNTs or free MWCNTs, but not
in the areas lacking MWCNTs, demonstrating MWCNT-
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stimulated production of IL-33 by epithelial cells (33).
Importantly, the implication of IL-33−ST2 signaling in CNT-
induced pathological effects in the lung has been examined by
using genetically engineered mice and blocking antibodies. First,
MWCNTs induce lung inflammation, lung fibrosis, and impaired
lung functions on day 30 post-exposure in WT mice, which are
remarkably attenuated in mast cell-deficient KitW-sh mice and ST2
KO mice. Reconstitution of KitW-sh mice with BMMCs from WT
mice restores these MWCNT-induced pathological outcomes,
whereas that with BMMCs from ST2 KO mice does not. This
study therefore demonstrates the crucial role of ST2 in mast cells in
promoting MWCNT lung pathology (32). Furthermore, studies
using the KitW-sh mice demonstrate that mast cells function in
increasing the mRNA expression of type 2 cytokines IL-4 and IL-13
by MWCNTs in the lung, indicating the critical role of mast cells in
MWCNT-activated type 2 immune response (88). Second, blocking
IL-33 signaling by pretreating WT mice with anti-ST2 antibodies
markedly reduces the recruitment of eosinophils, but not
neutrophils, as well as the levels of IL-5 and CCL11 (Eotaxin),
but not IL-6, in the lung exposed to MWCNTs for 24 h. Moreover,
the recruitment of eosinophils is impaired in IL-13 KO mice and
IL-33 KOmice, but is unaffected in Rag1 KOmice that lack mature
B and T cells, compared with that in WT mice (33). Third, the
number of eosinophils in BAL is increased by MWCNTs on day 30
post-exposure in WT mice, which is markedly attenuated in IL-33
KO mice (34). Together, these observations strongly support that
IL-33−ST2 signaling plays an essential role in stimulating type 2
immune response in MWCNT-exposed lungs.
IL-4/IL-13−IL-4Ra−STAT6 SIGNALING

The differentiation and activation of Th2 lymphocytes and M2
macrophages are the hallmark steps in type 2 immune response.
Th2 and M2 cells function as the major effector cells to produce a
variety of type 2 cytokines and mediators. When type 2 immune
response is activated, the early effector cells, such as mast cells,
eosinophils, and ILC2s, produce initial IL-4 and IL-13 to
stimulate the differentiation of naïve CD4+ T (Th0) cells into
Th2 cells. Th2 cells produce large amounts of type 2 cytokines,
such as IL-4, IL-5, and IL-13, which serve as the major inducers
for the polarization and activation of M2 macrophages. M2
macrophages produce copious amounts of type 2 cytokines
and mediators, such as IL-4, IL-10, IL-13, TGF-b1, and PDGF.
Through this cascade, type 2 immune response is activated and
propagated to exert its biological functions. The cell signaling
involved in the activation of Th2 cells and M2 macrophages has
been well-characterized, which is featured by the IL-4/IL-13-
stimulated, IL-4Ra-mediated activation of STAT6 pathway. In
this pathway, IL-4/IL-13 binds to the receptor IL-4Ra to induce
phosphorylation of STAT6. Homodimers of phosphorylated
STAT6 translocate from cytoplasm to nucleus and transactivate
target genes, leading to the expression of type 2 cytokines and
mediators. Emerging findings indicate that this signaling cascade
is activated during CNT-induced type 2 immune response in the
lung, although more comprehensive studies are requisite to
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address the activities and functions of individual cell types and
type 2 cytokines in the future.

A number of studies reveal that type 2 immune response is
induced and activated, demonstrated by Th2 cell differentiation,
M2 macrophage polarization, and increased production of a
Frontiers in Immunology | www.frontiersin.org 10
variety of type 2 cytokines and mediators, such as IL-4, IL-13,
and TGF-b1, in CNT-exposed lungs (10, 14, 15, 52, 82).
Meanwhile, significantly increased protein levels of IL-4 in
sputum and serum and IL-5 in sputum of the workers exposed
to MWCNTs, compared with controls, have been detected (21).
FIGURE 4 | Immune cells and signaling pathways implicated in type 2 immune response in carbon nanotube (CNT)-exposed lungs. Type 2 alarmin IL-33 is induced
and activates mast cells, leading to increased secretion of type 2 cytokine IL-5 and recruitment of eosinophils, in CNT-exposed lungs. CNTs induce the differentiation
of Th2 cells and the activation of STAT6 and GATA-3 in Th2 cells, resulting in the expression and secretion of type 2 cytokines IL-4 and IL-13, in the lung.
Furthermore, the polarization of M2 macrophages is induced by CNTs in the lung. M2 macrophages exhibit STAT6 activation and produce various type 2 mediators,
which function in suppressing acute inflammation, developing type 2 inflammation and chronic inflammation, and promoting lung fibrosis.
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Together, these studies provide evidence supporting that type 2
immune response is a critical player in the development of CNT-
induced lung inflammation and fibrosis.

It has been visualized that the induction of Th2 cell
differentiation and activation occurs in mouse lungs on days 1,
3, 7, and 14 post-exposure to MWCNTs (XNRI MWNT-7).
MWCNTs remarkably increase the numbers of IL-4+ CD4+ cells
and IL-13+ CD4+ cells, indicating the formation of Th2 cells, as
well as the induced expression of IL-4 and IL-13 in Th2 cells.
Meanwhile, MWCNTs notably increase the level of phosphorylated
STAT6 and the amount of GATA-3, which is upregulated by
phosphorylated STAT6 and in turn functions as a transcription
factor to transactivate the genes encoding Th2 cytokines, such as IL-
4, IL-5, and IL-13, in the lung. The numbers of p-STAT6+ CD4+
cells and GATA-3+ CD4+ cells are evidently elevated in MWCNT-
exposed lungs, compared with control lungs. Moreover, a panel of
signature downstream target genes of IL-4/IL-13 signaling,
including Il4i1, Chia, and Ccl11, are markedly induced by
MWCNTs at both mRNA and protein levels in lung tissues.
Together, these findings demonstrate the activation of IL-4/IL-13
−IL-4Ra−STAT6 signaling in Th2 cells by MWCNTs in the lung
(52). The induction of Th2 response by CNTs is supported by a
recent study using STAT6 KO mice, in which the level of IL-5 is
elevated by MWCNTs (XNRI MWNT-7) in the BAL from WT
mice, but not in the BAL from STAT6 KO mice, on day 1 post-
exposure (30). Altogether, in response to CNT exposure, Th2 cell
differentiation is induced, Th2 hallmark signaling pathway is
activated, and Th2-type cytokines are produced, which promote
the polarization and activation of M2 macrophages in type 2
immune response.

M2 macrophages promote the function of type 2 immune
response through producing type 2 cytokines and mediators. In
CNT-exposed lungs, a variety of type 2 mediators, such as TGF-
b1, PDGF, IL-10, TIMP1, OPN, and MMP12, are markedly
increased, which indicates the activation of M2 macrophages by
CNTs (10, 14, 15). Indeed, alongside the increased levels of IL-4
and IL-13 produced by Th2 cells in CNT-exposed lungs, the
polarization and activation of M2 macrophages have been
demonstrated (82). During the acute response to MWCNTs
(XNRI MWNT-7), both M1 and M2 macrophages are induced
in mouse lungs. However, M2 macrophages are dominant on
days 3 and 7 post-exposure, whereas M1 macrophages mainly
exist on days 1 and 3 post-exposure. M2 macrophages are
detected with the well-known surface markers, CD206 and
CD163. It has been known that in M2 macrophages, but not
M1 macrophages, the IL-4/IL-13−IL-4Ra−STAT6 signaling is
activated and leads to an increased level of phosphorylated
STAT6, and phosphorylated STAT6 directly upregulates the
transcription of the genes encoding certain M2 markers and
type 2 mediators, such as ARG1, FIZZ1, and YM1 (89, 90).
Indeed, phosphorylated STAT6 is markedly induced in
MWCNT-exposed lungs, as wel l as in a subset of
macrophages therein, on days 3 and 7 post-exposure,
suggesting the activation of IL-4/IL-13−IL-4Ra−STAT6
signaling in M2 macrophages under MWCNT exposure.
Concurrently, the levels of ARG1, FIZZ1, and YM1 are
Frontiers in Immunology | www.frontiersin.org 11
dramatically elevated in lung tissues on days 3 and 7 post-
exposure to MWCNTs. Furthermore, the induced expression of
ARG1 is visualized in a subset of macrophages in MWCNT-
exposed lungs on days 3 and 7 post-exposure. Together, these
findings disclose the activation of IL-4/IL-13−IL-4Ra−STAT6
signaling in M2 macrophages and the functionalization of M2
macrophages induced by MWCNTs in the lung, leading to the
production of type 2 mediators, which underlie the functions
of type 2 immune response in MWCNT-induced lung
inflammation and fibrosis (82).

In aggregate, accumulative findings have revealed that Th2
lymphocytes and M2 macrophages are induced and activated,
and IL-4/IL-13−IL-4Ra−STAT6 signaling is activated to
upregulate the expression of type 2 cytokines and mediators in
these cells, which together lead to the establishment and
propagation of type 2 immune response in CNT-exposed
lungs. The activation of type 2 immune response provides the
underlying mechanisms for the transition from acute
inflammation to Th2-driven type 2 inflammation and chronic
inflammation, and for the development of fibrosis that is
promoted by various type 2 mediators, such as TGF-b1,
TIMP1, and OPN, in CNT-exposed lungs.
CONCLUSION AND PERSPECTIVES

The characteristics of the immune responses induced by CNT
exposure in the lung have drawn a great interest to elucidate their
underpinning causes, modes of action, and pathological functions.
In this regard, the cell signaling pathways and mediators activated
during immune responses constitute an essential aspect. A number
of crucial signalingpathways activated in immune cells during acute
inflammation or type 2 immune response have been revealed in
CNT-exposed lungs, which demonstrate a consistency with the
knowledge derived from related human lung inflammatory and
fibrotic diseases and experimental animal models to a great extent.
The activation of these signaling pathways provides the cellular and
molecular mechanisms for CNT-induced inflammation and
fibrosis, as well as supports the development of CNT-exposed
animals as a new model system for dissecting the initiation,
transition, progression, and functions of immune responses in
lung diseases. The discussion in this article exhibits a mechanistic
basis for this emerging, yet promising, research area.

Nevertheless, compared with the numerous pathological
observations, the mechanistic understanding of immune
responses at the cellular and molecular levels in CNT-exposed
lungs is at an early stage and represents a requisite research
direction. Regarding the signaling mechanisms activated by
CNTs in immune responses in the lung, a number of
questions are noticeable to address in future studies. Listed
here are a few of them. Which inducing factors, immune cells,
cytokines, signaling pathways, and transcription factors, play
the determinant roles in the initiation and progression of acute
inflammation, type 2 immune response, and chronic
inflammation in CNT-exposed lungs? In type 2 immune
response, do mast cells, eosinophils, and ILC2s promote Th2
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cell differentiation and activation via type 2 cytokines, and do
Th2 cells control the polarization and activation of M2
macrophages via type 2 cytokines? Which type 2 cytokines
and mediators function in suppressing acute inflammation?
And, which type 2 cytokines and mediators initiate and
enhance lung fibrosis? With the facilitation of multiple tools,
such as genetically engineered mouse strains, neutralizing
antibodies, and specific chemical inhibitors, these questions
are expected to address in the coming studies. Meanwhile, cell
type-specific analyses of the induced production of pro-
inflammatory and pro-fibrotic factors, activated signaling
pathways, and pathological functions in CNT-exposed lungs
are requisite to further understand the cellular and molecular
mechanisms underlying CNT-induced lung inflammation and
fibrosis. An intensive research effort and a bloom of new
achievements in this research area are anticipated to appear
in the coming years, which might lead to new findings to
enhance the understanding of human lung diseases involving
inflammation and fibrosis.
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